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Introduction

After a statement describing the over-all goals and personnel of
this research project , this final report contains: a list of technical report s
on research supported by this project and a description of research
accomplishments as given in the ab stracts or introductions of the technical
reports which have been issued.

Goals

This research has developed a general approach to statistical data
analysis (in particular to non-parametric statistical data modeling and to

s robust analysis and modeling of statistical data, including the one-sample,
two- sample, bivarlate- sample and inultivariate- sample cases).

The new results being obtained seem to be attracting wide interest:
(1) Professor Parzen ’s paper “Nonparametric Statistical Data Modeling ”
is a major invited address at the August 1978 Annual Meetin g of the
American Statistical Association and will be published with discussion in
the December 1978 issue of the Journal of the American Statistical
A8sociation; (2) Professor Parzen ’s paper “A Density-Quantile Function
Perspective on Robust Estimation” was given at the April 1978 ARO
Symposium on Robust Estimation and will be published in its proceedings.
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Personnel r
The following faculty have worked on this research project:

Emanuel Parzen
Marcello Pagano
H. Joseph Newton
Jean- Pierre Carmichael

The following Ph. D. students have worked on this research
project :

David Trichtler
Michael White

Technical Reports
Date and

Author Title Report No.

Emanuel Parzen Nonparametric Statistical Data January 1977
Science: A Unified Approac h 47, ARO- l
Based on Density Estimation
and Testing for “Whit e Noise ”

Jean -Pierre Carmichael, New Nonparametric Approach July 1977
Emanuel Parzen to the Two Sample Pr oblem 56 , ARO-2

Emanuel Parzen Nonparametric Statistical Data January 1978
Modeling 59, ARO- 3

Emanuel Parzen A Density-Quantile Function March 1978
Perspective on Robust 60, ARO-4
Estimation

Jean-Pierre Carmichael Techniques of Quantile June 1978
Regression ARO- 5

A publication on research orig inating from support by this ARO
project is: Marcello Pagano (1977), “An Approach to Time Series Pre-
diction. ” Proceedin~g~s of the Comp~iter Science and Statistics Tenth Annual
Symposium on the Interface.
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NON PARAMETRIC STATISTICAL DATA SCIENCE:

A UNIFIED APPROAC H BASED ON DENSITY ESTIMATION
AND TESTIN G FOR “WHITE NOISE”

by

Emanuel Parzen

The aim of this pape r is to Introduce a single canonical problem to

which one can transform many basic statistical inference and statistical

data analysis problems. Thi s canonical problem is most simply desc r ibed

as the problem of testing for white noise via density estimation or

smoothing . We first state some of the inference problems which we seek

to unify.

One-sample (univariate) inferenc e problems. Let X 1 ,. .. , X

be i. i. d. (independent identically distributed) random variables with common

a. c. (absolutely continuous) d. f. (distribution function) F(x) and

probability density function f(x) . One seeks to efficient ly:

(i) estimate f(x) non-parametrically (without making any

prior assumption about its functional form)

(Ii) test for a specified probability den sit y f0(x) whether there

exists constant s ~.& and ~ such that

f ( )  = 
1 f ( X ~~~~) • F(x) = F0(x ;~~ )

(Iii) estimate the parameters ~.L and ~ (called location and

scale parameters).

~ 
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Two-sample (un ivar iatel inference  problems. Let X 1~~... Xm

be i. i.d. with common a.c.  d, f. F(x) and let Y 1,. . .. Y~ be i. i.d.

with common a. c. d. f. G(x) . One seeks to efficiently :

(I) test whether there exists constant s M and a such that

fx -G(x) = F~ a

(ii) estimate ~.t and a

One - sample multivariate infere nce problems. Let

‘X l
X =

\ X~

be a random vector with absolutely continuous multivariat e distribution

function F(x
l
.....xd

) and density f(xl
....,xd) ; 

let

be a random sample. One seeks to efficiently:

(I) test whether the components X 1 . .. , Xd 
ar e independent

random variable s,

(ii) estimate the multivarlat e density f

(iii) estimate the regression function

= EEX
~
1X i 

= xl , . . . , Xd I  Xd l ]

In addition, there are multi-sample univarlate Inference problems

and multi-sample multlvariate inference problems concerned with the equal-

ity of many distributions; however , they are not discussed In this paper. 

— • 
____________ ________________________ 
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NEW NON PARAMETRIC APPROACH TO THE
TWO-SAMPLE PROBLEM

by

Jean-Pierre Carmichael
. 4

and

Emanuel Parzcn

ABSTRAC T

- 

I 
Given two random samples (X 1 . . . . X~~) and (Y

1
,,. . . . Y )  •

we want to test the hypothesis that Fx ( 5 ) F~ (.) . There are different

possible alternatives. Here we are mostly concerned about change of

location : -

I
F~~(x) = Fx (x - p) . :~ 

-

In Chapter 1. we review the classical parametric and non-para-

metric procedures that are current ly used. In Chapter ~~, we Introduc e

some new test statistics obtained from Parzen ’s new formulation of the

problem (1977). In Chapter 3, we present the result s of simulations

comparing these differ ent procedures on a wide range of underlying di.-

tributions. In Chapter 4 , we document the use of a computer package

developed here , Including some new grkphical ditsplays.
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NON PARAMETRIC STATISTICAL DATA MO 1)EUNG

by

Emanuel Parsen

Introduction

It is the aim of this paper to introduce new types of keys for

exploratory data ana lysis  (of cont inuous data) based on es t imat ing the

guantile function and densi ty  q~ an t i l e  funct ion.  it appears that th i s

approach leads to an explo ra tory  dat a analysis which has a firm prob-

ability base. Consequently the dis t inct i on between exploratory and

confi rmatory data anal ysis  can b~ regarded as a dist in ct i on between

confi rmatory nonj~~r an~et rk’  st a t i s t i c a l  data an al ysis  or modeling . and

confi rmatory pa ra met n c  statistical data .uta lys is.

The basic proposition of th i s  paper is th at  exp lora tory  data anal y s i s

and convent ional  pa raniet n c  stati sti cal inft’ renc e both have as t h e i r  a I na

the estimation of the quantile fuuct ion Q(u) • 0 ~ u ~ 1 • of a random

va riable X of which the dat a X 1. . . . . X are independent (or dependent

observations. To estimate Q . one’ assumes a r ep resen ta t ion  for  it of

the form

Q(u ) = ~. & + a Q 0(u)

which is equivalent to the classic location and scale parameter model for

the probabilit y density function: f(x) = ~ f 0(’~ 
; P.) 

. We ’ call th is
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representation hypothesis H,~ . One can distinguish four stages of this

model.

I. Parametric model: one assumes Q0 known . Then one ’ s

aim is to estimate ~ and a . One uses eithe r maximum likelihood

estimation or optima l linear conib i ’aationa of order statistics.

II. Goodness of fit: one ~rst s l1~ 
for various specifications of

Q0 (corresponding to the familiar probability laws~ such as normal ,

exponent ial , log i st ic , Weib ult , Pareto , Cauch y , and so on).

111. Robust p a ramet rtc  model: Q0 is specified by spec i f i c a t i on s

which permit sm all deviation s from an Ideal Model , such as

symmetr ic and possibly long t a i led”  or “Q0 norma l except for coma-

tamination by outliers . “

IV. Non—parametric model:  est imate Q
0 , either by e ’st i miaa t i ng

the density quantile function IQ(u) f (Q(u)) , or through sui table  plots

of the sample quantile function s of t raxasformat ions  of the data.

The main aim of this  paper is to introduce a ‘‘density es t imat ion ’’

approach to Goodness of Fit tes ts  which also y ields es t imat ions ot Q .

To a specified hypothesis 110 ; Q(u) p + oQ 0(u) , one can define a

density d(u) • 0 ~ u ~ 1 , such that 1_t
o is equivalent to d(u) ~~ I .

Estimation of d(u) provides a teat of H~ and also an estimator of the

true fQ function when 110 is rejected. Many density estimation

method. are available ; we believe the “autoregressive” method works

be st for small samples , and we describe it in detail.

-—— — •-———— ••.——— —-— —• - -—--_ 
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A DENSITY-QUANTILE FUNCTION PERSPECTIV E
ON ROBUST ESTIMATIO N

by

Emanuel Parzen

A perspective on robust estimation is discussed, with three broad

sets of conclusions. Point I: The means must be justified by the ends.

Point II: Graphical goodness-of-fit procedures should be applied to data

to check if they are adequately fitt ed by the qualitatively defined models

which are implici tly assumed by robust estimation procedures. Point Ill:

There is a danger that researchers  may regard robust regression pro-

cedures as a routin e solution to the prob lem of modeling relation s between

variables without fi r st study in g the distr ibution of each variable .

New tools introduced include: Student ’ s window; Quantile-Box

Plots; density-quantile estimation approach to goodness-of- fit tests;

and a defin ition of statistics as “arithmetic done by the method of

Lebesgue integration. ”

_ _ _ _  _ _  ~~~~~~~
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TECHNIQUES OF QUANTILE REGRESSION 
- -

~

by

Jean-Pierre Carmichael

Introduction

Given observations ((X
1
, Y), i 1, . . . , n) on random variables

(X , Y) with joint distribution F
~ ~ (x . y) • we want to es t i mat e  the

regre ssion function of \‘ on X , E[Y X x] , m a o n p a r a m n e t r i c a l l y.

In order to f ind a n atu ra l  es t imator  (s imp le comnpu t at i ona l l y and

in tu i t ive l y appeal ing)  • I ~a r en ( 1 977) dcv eloped the  fol lowing t h e o r e t ica l

approach.

I . Theo ret i c a l  Approach:

Let U
1 

Fx(X) and U~ F~~(Y ) , then the  joint d i s t r ibu t ion

of U 1 and U
2 is

Du u (u 1.u z ) = Fx ~~~~~~~~~~~~~~~~~~ 

Q~~ u~~))

and the i r  joint density is

f x y(Q~~~ ) Q~~(u ,))
du u (u i i u z ) 

~~

where Fz Is the distribution function of Z

is Its density function

is its quantile function

—~~~~~ 

; 
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Let r(x) be the regression function of Y on X = x

~~5c ~ (x .y ) d y
r(x) = E [Y I X x] J~~— (x-x

We now defin e the regression-quanti le function rQ ( ‘)  by

rQ(u) r
~

Q
~~(u)) = E[Y~ X Q

x (u)]

How do we compute  r Q( .)  ?

By def in i t ion ,

~x, y(Q~~
(u) . y dy)

rQ(u) = J’ f ~~~~

—

~

---
~X~¼ X

Let y Q~~(u2) , th en

rQ(u) J’,
~ 

Q~~(u
2 ) du u2

(t1 t12 ) du
2

If we introduce a Dirac delta function , we can express rQ(.) as a

double integral

1.1 rQ (u)=J’~ J~ Q~~(u2) 6(u
1 

- u)dDu u (u j,uz)

We estimate rQ ( .)  by

1.2 rQ(u) = J ~f~ 
tIz ) h(fl) K (~~

h
l 2 ~~~) dk 1 U

u
1I u2

L _ 
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